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ABSTRACT
Design of experiments for estimation of parameters in non-linear models
is studied in a Bayesian framework, with the objective of maximization of the
anticipated Fisher information. Two stage optimal designs are proposed in

attribute life testing situations.

L. Introduction

Consider a system of N components working independently and having
identical cumulative distribution functions (c.d.f.) of the time till failure
F(t;6). F is a known function and 8 is an unknown parameter belonging to a
parameter space (0, It is assumed that the number of components, N, is a fixed
positive integer. The components fail randomly at unobservable times. We
inspect the system after x units of time and count the number of failed compon-
ents. The replacement of the components could follow one of the following two
policies:

(A) Only failed compcrents arc replaced at each inspection.

(B) All items in the system are rcplaced at each inspection (frequent
replacement policy, or block replacement policy).

(*)Pa;; of the Ph.D. thesis in department of Mathematics and Statistics,
Case Western Reserve University, Cleveland, Ohio. Supported by ONR .
Contract N00014-80-C-0325 (NR 042-276) at Virginia Polytechnic Institute

and State University
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The policy to ascribe depends upon the type of system under consideration.
For example, policy (B) is preferred when it costs more to inspect and change
only failed components as compéred to changing the whole system. Such examples
are encountered in the replacement of street light bulbs, etc. Sometimes it is
practically impossible to change only the failed components without effecting
the whole system. Systems composed of transistors built in modules.
For more applications see Barlow and Proschan (1967). In quantal response
bioassay studies policy (B) is followed, where; after experimentation, the
whole batch of experimental units (mice, fish, etc.) is replaced by a new one.
Finney (1978) gives an exhaustive reference list of bioassay studies of this
kind.

Let J(xl),J(xz),...,J(xn),... denote the number of components failing

n-1 n

+x2),..,( Iox. I xi),...

1 1=1 i=1
Intuitively, we would like to use the information (J(xl),...,J(xn),xl,...,x“)

during the intervals (0,xl), (0,x1), (xl,x

to define x so that J(xn+1) will provide as much information on 8 as possible.

n+l
To define the best or optimal interinspection time at the (n+l)st stage, we
shall use the criterion of maximizing the conditional Fisher information about

8, given (J(xl),...,J(xn),x ..xn). More specifically let Fn denote the sigma

0
algebra generated by (J(xl),...,J(xn),xl,...,xn) and let I(e;xn+1|Fn) denote the
conditional Fisher information of 6 at the (n+l)st stage given Fn' Generally,
I(e;xn+1]Fn) depends on 6. Hence, the optimal value of X 41 is a function of the
unknown parameter 6. This problem can be overcome by changing the criterion of
optimality in a suitable manner.

In a Bayesian framework we assume that © is a random variable having a specified

distribution function, called the prior distribution. The Bayesian interinspec-

*
tion time X 41 is a number maximizing the predictive Fisher information t.e.,

%
h{I(O;xn+l|Fn)l 3_Ell(o;xlrn)} (1.1)
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for n=1,2,..., and V x € X, where the expectation is with respect to the posterior

*
distribution of 6 given Fn and X is an appropriate design space. X, is defined

as the value belonging to X such that

e -

E{I(e;xt)} > E{I(03x)} Vxe X, (1.2)

i where the expectation is taken with respect to the prior distribution of 6.
Zacks (1973,1977) discussecd this problem when the time-till failure follows

]
|
{ an exponential distribution i

F(x,0) = 1 - exp{-6x}, !

and 0 follows a gamma prior distribution. This case will be studied along with
some other distribution functions F(x,8) and different prior distributions of 6.

It is readily seen that J(xl) is a binomial random variable with parameters
N and F(xl;e). Accordingly, the Fisher information function of F(xl;e) given

X, is
1

I(F(xl;e)) = N/{F(xl;e)(l-F(xl;e))}. (1.3)

Therefore the Fisher information of 6 given x1 is (Khan (1980))

T(85%)) = T(F(x,30)) (55 F(x 30))° . (1.4)

s —— . - ———

Unfortunately, the conditional distribution of J(xz) given F, is not necessarily

binomial under replacement policy A, unless F(x;6) is a negative exponential. This

e

complication arises due to the fact that at the 2nd stage we have two kinds of
failure distributions - for those components which failed in the previous
interval and were replaced by identical components we still have the failure

distribution F(x,;e), however, for those components which did not fail during

*
(0,xl) the faflure distribution is

- Ep— e - e e ——t g . '\"“—, - ~ . . -
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G(x,3%,8) = [F(x; + x,30) - F(x;50)1/[1 - F(x;50)] .
*
Clearly, if F is negative exponential G(xz;xl;e) = F(xz;e). So

J(x2)|F1 =Y +2
where Y ~ B(J(x;), F(xz;e))
* K
Z ~ B(N - J(xl), G(xz,xl,e))

and Y, Z are conditionallly independent.

Now I(G;leFl) does not have the same form as (1.4) for general failure dis-
tribution F(x;6). This problem, however, can be overcome by the method used

by Zacks and Fenske (1973). If F(x,8) is the negative exponential distribution,

then
I(e,leFl) = 1(8,x,)
#*
and the second stage optimal interinspection time X, is the value maximizing

E{I(e;xz)}

where the expectation is with respect to the posterior distribution of 6 given

Fl. Under replacement policy B, on the other hand,
J(x)|F _; ~BONF(x;0) 5 n=1,2,...

for all distributions F(x;6). Hence,
T(0;x |F_ ) = T(F(x_;8)) (== F(x_,0))> (1.5)
*"n' n-1 n’ 38 n’ ’ *

Thus, under replacement policy B the problem has the same structure in all the

stages. In the case of negative exponetial distribution the problem remains

the same in both kind of replacement policies.




2. One-Stage Designs

In this section we shall discuss the determination of interinspection times
for the following cumulative distribution functions:

(i) F(x,9) 1 - exp{-x/6}; the negative exponential distribution.

(ii) F(x,8) 2(1 + exp{-ex})_1 -1 3; x>0, the truncated logistic distribution.

(iii) F(x;8) = (e—l)-l{e . exp{-e-ex}

value distribution.

-1} ; x> 0 ; the truncated extreme

(iv) F(x,8)  Thaving a symmetric density function and 6 is the shift parameter.

These examples will suffice to show the complexity of the algebraic manipulations
involved for the solution of this problem. Nevertheless the method is straight-
forward and could be applied to any F(x;6).

(i) The negative exponential distribution:

If F(x,8) = 1 - exp{-x/6}; x > 0, 6 > 0, then by equation (1.4)
2 4
1(0;x) = Nx“/{0 (exp(x/8)-1)} . (2.1)
The design level x maximizing (2.1) is the solution of the equation
exp(x/0){2 - x/0} -2 =0,

which is, x° = 1.5936 6.
The prior information with respect to a prior distribution G(8) is defined

as the prior expectation of I(8;x) and is given by

x/ x/0

E{I(8;x)} Nsz{e- 0/{94(1-e-

)1}

Nx2E{ T exp{-kxle}leé}
i=1

Nx2 T E{exp{-kx/e}/eb} . (2,2)
k=1

. o W
—— v ety e = el . - ~ -
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The exchange of summation and expectation in (2.2) is permissible, since the
function is non-negative.

The Bayes optimal design level, xo(G), is a value of x satisfying

-kx/0
A - (1 - kx/28) daG(e) =0 (2.3

Q0

10 6

™M 8

k

provided the left hand side of (2.3) converges uniformly in x.
Consider the case when G(6) is the inverted gamma distribution with para-
meters (A,m). The corresponding density function g(8) is given by

\m -m~5
g(e) = ) 3] exp(-2/08) 3 © >0

For this prior distribution (2.2) reduced to

kT (O + xk)TY
k=1

E{1(0;x)}

X2 T (L + xk/n)"™Y
k=1

when c and c¢' are appropriate constants.
Without loss of generality, we discuss the problem of choosing an x to
maximize

@x©

f(x) = = x2/(1 + xk)m+a

k=1
*
The solution X will provide the optimal design level X, for all A by the
relationship
*
Xy = Axo
Let,

g(k,x) = x2/(] + xk)m+4




Lemma 2.1.

«©

(i) I g(k,x) is uniformly convergent in X ¢ (0,).

k=1
gy & .y 4
} (i1) 4 £ = T o= gl,x) .
k=1
(iii) Xy ~ 1.5936/(m+2) for large values of m.
Proof.

PP S———

Each function g(k,x) attains a unique maximum at
X = 2/(k(mk2)) , k=1,2,...

Let,

i Mk = g(k,xk) = sup g(k,x) , k=1,2,...
| X

It follows that

© »

W™ 8

[+ ) - 1
z ~ = <
k=1 Mk k=1 k2

Thus (i) is proved by the Weirstrass M-test (Widder 1961). By similar arguments

(ii) follows.

To prove (iii) we notice that
glk,x) > g(k+l,x) V x e (0,), k=1,2,...

Since g(k,x) attains its maximum value at x = 2/(m+2)k, it readily follows that

for each k=1,2,...

+ for x ¢ [2/(m2)k , =)
g(k,x) = (2.4)
+ for x e (0,2/(m+2)k)
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So if f(x) attains its maximum value at X0 then
bl

X o€ (0, 2/(mt2))
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Indeed,

P S

g(k,x) g(l,x) ; k=1,2,...

1A

' and
» xkix , k=1,2,...

{ ‘ According to (ii) one can differentiate under the summation and
\ ;
i d

™ f(x) =0 is equivalent to

{2 - (m2)kx} A+ k) ™2 =0 . (2.5)

™~ 8

k=]

Let x = a (m+2)_1 where for each m, 0 < o < 2, The values of x (or a ) can
m m m m m
be determined numerically, for each m from equation (2.5). We show now that f..x
large values of m the solution has a simple approximation. For this purpose w:

establish first that a is a convergent sequence. Indeed, there exists a sub-~

sequence and a limit point o such that

o +a ¢ (0,2] as v *+ew

\Y
Hence,
© —mv—S
12 - « kl{m + 2+ a k) =0 Vv>0
m v m
k=1 v v
Equivalently,
R mv+5
o m
= _ v
2 - a = (ka 2) P R
v k=2 v v T
v
— . 4 - @
- —— e - - -._..‘ - P W ) w'ﬂ- -
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Taking the limit as v + +«, one obtains the equation

0

2 -a= I (ak-2)e-a(k_1) ,
k=2
or
-0
2 -a = e—a[a(2~fa ; - 2 ] ’
(l-e ) 1 -

this equation is further reduced to

2 -a-2%=0.

The solution of this equation is approximately a = 1.5936.

unique limit point. Hence, x ~ 1.%936/(m+2), as mo.

m, 0

Some values of a , x
m’ “m,0

2.1.

i.e., o
m

has an

(Q.E.D.)

*
and xm for various values of m are given in Table

The results obtained so far are summarized in the following theorem.

Table 2.1
Values of a , x* and x for A=1

m’ “m m, 0

%
m *m *n X, 0
0 1.530 .765 . 797
1 1.549 .516 .531
2 1.556 .389 .398
3 1.560 .318 . 318
4 1.564 .261 .266
5 1.567 .224 .228
6 1.568 .196 .199
7 1.573 .175 177
8 1.577 .158 .159
9 1.580 144 . 145
15 1.582 .093 094
20 1.584 .072 .072

+oo 1.594 0 0

e ——— .-, L Ve - P — e - -
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Theorem 2.1.

If N components are working independently with identical failure distribution

F(x,0) = 1 - exp(-x/8)

vnecs € kas the Taverted garma (Aom), X, > 0, priov disiribrtion, ‘hea Lhe
¥

firse stage optimal interinspection time X4
A

5 gilven by

1

k]

* -
o X = X a (m2)
. m,1 m

; where the valuwes of o are given in Table 2.1.

(ti) sl truncated lugistic distribution.

We consider the logistic distribution truncated to the left, i.e.,
¥ F(x,8) = 2(1 + exp(-6%)) " =13 x>0, 6>0.
In this case the failure (hazard) rate function,

h(x) = 6{1 + exp(*ex))-l .
, is an increasing fun~tion of x.

Also according to (1.4) the Fisher information function of 8 given x is

2
1(8,x) = 2Nx" exp(-6x) 5.
{1-exp(-6x) H l+exp(-0x)}

(2.6)

The design level x maximizing (2.6) is the unique solutinn of the equation

; lkl‘.‘m».i —Ed -

-0x 28x

2 - 8x = 8x(3 - e ) (e -1

-1)

which is xo(ﬂ) = 2.160l/¢.

For a given prior distribution of 6, the expected Fisher information function

is given by




11
2 e—ex
E{I(8,x)} = 2NxX"E { — =1
(1-e ex)(1+e Sx)z
@ o« . - +-
G EFE TR T Pl L DE)
k=1 j=0 (2.7)
e I3 DI GHIM (- (k+5) %)
. 6
k=1 j=0
where Me denotes the Laplace Steiltjes transform of the c.d.f., of 6. It is

difficult to characterize the design level x* which maximizes (2.7) in the
general case. Therefore, consider the special case where 0 has a prior gamma
distribution, G(A,m), with m > 2.
In this case
Mg (~(ebi)x) = (L + x(e+3) /)7
Hence, without loss of generality we can assume that X = 1, and consider, for

m > 2, the expression

E{1(0,x) = cx CDIGHD A+ xGet)) ™™ (2.8)

I =1 8

i ~1 8

0

k=1 j

Differentiating with respect to x under the summation signs we obtain

5% E{I(0;x)} =¢ £ L (—1)j<j+l)
k=1 j=0 (1+x(k+3))

2-x(k+j) (m-2)
m+1

Let a = xm(m—2) where X is the solution of the equation

5 (-1IGHD -
k=1 j=1 (1 + (ekia(m-2) 1ymt+l

=0Vm, (2.9)

obtained by equating the partial derivative to zero. To see why @ is a con-

vergent sequence as m+o, we note that for large m
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1+ (e @2)"H™! = e

© . 2 - a (k+j)
te.. & % (-1)3G+D) ——T—— % 0 for large m
k=1 i=0 m{k+j)
-2u -a -3a -2a

=22(1 - e m)(1 + e m) - am(l + 2e ™ +e m) = 0 for large m

- = a % 2.1651 for large m

Hence, am + 2.1651 as m>+~. As before, when X # 1, we have

X = Ao (m—Z)-l.
m m

In the following table we give the optimal solution in terms of @ and X for

smxll values of m, as determined by numerical solution of (2.9).

Table 2.2
A =1
x -1
m a X x =2.1651(m-2)

; m m m

! 3 2.04687 2.04687 2.1651
v 4 2.06844 1.03422 1.0825

by 5 2.08836 0.69612 0.7217

i o 2.10172 0.52543 0.5413

, 9 2.12331 0.30333 0.3093

b 10 2.12758 0.26596 0.2706

o 15 2.14032 0.16464 0.1665
‘; + 2.16509 0.0 0.0

14

1 (iii) The truncated extreme value distribution.

The truncated extreme value distribution is given by
DRSO M (rt-‘\)—l(e 87<x>((‘—ﬁx) - 1) sx -0, N G,

B i . AL
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The Fisher information function of 6 at a design level x is

x2 exp(-Ze—ex)exp(-Zex)

1(6,x) = 22 e A (2.10)
[e exp(e )-1][1-exp(-e )]
The design level x maximizing (2.10) satisfies the equation
2(1 + 1/nz)/z = [(1+e)exp(—z)—2]/[(l—e—z)(e e-z~l)] ,
where z = exp(-6x). The soluticn of this equation yields
x = -{n(.144188)/06 = 1.9366/0 . (2.11)

In analogy to the previous two cases we may conjecture that if the »rior
distribution of € is gamma G(A,m), the optimal design level, at which E{I(6:x)}
is maximized, is

X = A(1.9366)/(m-2) for large m.

Theorem 2.2

Suppose that the Fisher informuation function ts of the form 1(8;x) =
b akxpexp{—ekx}; p > 0, where a, do not depend on 8 and x; and that 1(8;x) is
k

.. . 0
maximized at x (8)

"

a/8. Furthermore, assume that

(i) b a xp_l(p—xke)e“exk is uniformly convergent in x,
k

(ii) z akem—l e_('\+Xk)e is uniformly convergent in 6,
k

(iii) I a xp—l Lp=(m=p) xk) is uniformly convergent in x,

K K (1+xk)™ 1

then if the prior distribution of 8 is the gamma G(A,m), E{I(8;x)} is maximized

at la/(m-p) for large values of m,

\ J‘(é&~ Eaduih N o e

e e . ——— L e v g . [ -
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Proof. Since I1(6;x) is maximized at x = a/6, therefore

; = 1(8;5%) = 0 for x=a/6 (2.12)
i -0xk

; It foilows from (i) thar I ak(p—xke)e =0 for x = o/f . From

! k

assumption (ii) we obtain that

T ay <P Ble 0%

' E{I(0;x)}
! Kk

* Toa x(1 4+ xk/A) " (2.13)
i k k

vothost loss of generelily, assume that A = 1.

Furthermore, from (iii) we get

2 . - 1. p - (m-p)xk
E{I1(8;x)} = x* "Ta = . (2.14)
ax K k (l+xk)m+]

Lot R be the value of x for which (2.12) is equal to zero, and let a = (m—p)xm.

We thus obtain the equation

o]
. m -m=-1 _ !
Sa (ragg) (1 + 225 k) 0V m (2.15)

e .

Moreover,

0lmk -m~1
= iak(p-amk)(l + E;;)

<
|

—umk
Eak(pamk)e for large m

n

~ a for large m ,

umk — amk
since (1 + —) R e Hence, X~ A/ (m-p), for large m.

m-p (Q.E.D.)

PSS .
¢
R
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Remarks. 1. For the truncated extreme value distribution

Nex2 exp(—Ze_ex)e“zex

[e exp(—e_ex) - 11{1 - exp(—e-ex)]

I1(6;:x) =

k4

could be written as

1(8;%) = Nx2 b)
j.k,2,q,v=0

- (24j42+v) 0%

35 Kk, 2,0,V

where
. . _
A _ IR (g Ve
Jaks2,5q,v J! 2! q! v!
2. The conditions (i), (ii), (iii), of Theorem 2.2 could be relaxed after

Gt o0 tiorwe cunvergenee of the series

La, exp(-6xk)
K k

The following theorem generalizes the last theorem for the prior distribu-

tions belonging to the class of infinitely divisible distributions.

Theorem 2.3.

If the Fisher information fumction of 6 is of the following form

I(8;x) = Zakxpexp(—GXk) 3 P20,
k

where a, do not depend on & or x; and if 1(8;x) is maximized at the design level
al® and © has a prior distribution belonging to the class of infinitely divisible
distributions with paramcter m, then E{1(0;x)} is maximiaed at the design level

x & a/E{0} for large m provided

(1) Xakxp—l(p—xkﬂ)exp(-exk) 1s uniformly convergent in x.
k

(ii) Xakg(e) exp(~0xk) 7o uniformly convergent in 0.
k

(iii) ra xp'lE{(p—xok)exp(—exk)} is uniformly convergent in x.

kk

. é&.,.‘“ Wt e
. e - a - - - . - . — e e - - Nt > ' -~ - ~ ~
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(iv) m x 1s a bounded sequence,
Proof.

Since I(6;x) is maximized at x = a/0,

Qi 1(6:3) = 0 for x = /6 (2.16)
Now, according to (ii),
E{1(6:;%)} = zakxpE{e_UXk}
k

= ZHkxp¢(xk) ,
k

where ¢(t) = exp(-my(t)), such that $(0) v.
Hence, by (iii)
5% E{I(e;xmﬂ = Xak{p + mxk ¢'(xk)! exp{-my(xk)} = 0.

k

Let am =mXx . We thus have the equation

kﬂm kam
' (—= - —_— =
iak{p + ka ¥'(—)lexp(-m y(—==)) =0 Vm, (2.17)
since &« = mx_ is bounded, there exists a subsequence m_such that m + x
m m v v m
converges to a finite limit, say a', as v » +~, Hence, X + 0 as v,
v
Expanding,
2
P(x) = $(0) + xy'(0) +—’5§ P0) + ...
we have
mk e a 2 k2
— ) = — ! b R_n
y(—) Skt (0) + () S5 e"(0) + ...
o (o k)
- — - - \J - (1]
mp (— k) a k y'(0) T o) + ...
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Therefore,
ka
m
v
m
\Y

eXP(-mVW( )) » exp(-a'ky'(0)) as v > 4w,
Or,

Zak!p = a'k(-¢' (O texp(-a'ky'(0)) =0 .
k

Hence, a' = a/{-¢'(0)} and a a/t-p'(0)}, which implies that

X X a/E{6} for large values of m .

(Q.E.D.)

Remarks:
(1) As the previous examples show, the approximation of X is better if
FO3) = -mp' (0Y s roplaced by - (m-p)y' (0).
(ii) Zacks (1973,1977) considered the case when
F(x;6) = 1 - exp(-6x)
with o ~Cy,m) ;: m~2 ,

by numerical results it was conjectured that
x = 1.5%3% \/(m-2)
m
By the above theorem we see that this is an aysmptotic result for large

values of m. However for small values of my x = a A/(m-2) where am are given in
m m

Tabie 2.1.

(iv) F(x,0) having symmetric density function.
So far we have discussed the cases when the parameter of interest is a
scale parameter. However, some time¢s we are interested in the shift parameter.
Consider the case where F(x;6) is the logistic distribution with a shift
parameter

F(x;0) [1 + exp(—x+0)1_l y =W < X oM —e < ) < ow

#




It is readily verified that
Ne_(x-e) |

1(6:x) 5
[1 4+ exp(-x+08)]

NF(x;0)[1 - F(x;8)]

The =ofare [(03x) ie maximized at che median of F(x;6), furthermore, since F(x;f)
is symmetric, xO(O) = 0. The Bayesian estimation of the median of the logistic
distribution was discussed by Freeman (1970). However, dvnamic programming
| me thods were used to obtain sequentially optimal designs, up to three stages,
when the prior distribution of & was taken to be the conjugate prior. We shall
consider chis problem from the point of view of maximizing the Fisher information.

For any symmetric c.d.f, F(x;0), the Fisher information function of 6 given

#

1(8;x) N{S%'F(X;G)}z/[F(x;O)(l - F(x;0))]

? = N )/ [FOG0) (- Fxe)] (2.18)

where £(x3;8) is the density of F(x;8).
Consider the case when f(x;8) is symmetric about x = 8. Note that f(x;0)
is defined on the real line R. Otherwise, the Fisher information function of ©

does not exist. Furthermore,
d
— f(x3;8) > 0 as x » 4=,
dx

We also note that in order that I(g;x) be maximized at x = 6 we need the necessary
conditions that

(i) f'(e38) =0

A
o

(i1) £"(838)

where prime denotes differentiation with respect to x.
This implies that the density f(x;08) is maximized at x = g. Moreover, if
f(x:n) attains a minimum value at x = ¢, then 1(9:;x) is minimized in a neighbor-

hood around 0.
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Accordingly, we consider only those symmetric densities which are bell
shaped (e.g., logistic, normal, etc., commonly known as Logit and Probit models

in bioassay).

Theorem 2.4,

Let 1(83x) be the Fisher information function of thc shift paramcter 6 at

the design level x for distributions F(x;0) symmctric about 6. [f

(1) f'(x38) <0V x > 86,

(i) £7¢6,0) + 2 £ (6,8) < 0

Then x = € 18 a poitnt of maxima of T(0;x). i

‘ e "? ST, :‘.:P {
* 2.1/2 :
(iit) [ f(t,0)dt < 1/2[1 - (f(x,0)/£(8,0)) V x> 8.
O f
{
: Thaw
I(8;x) attaines Lts maxirum value at x = 8,
Bfoof.
1(03%) = N £2(x;0)/[F(x;0) (1 = F(x:6))]
Since

I(6;x) ~ N fz(x;e)/[] - F(x:8)] as x » 4=
we obtain

1im I(®:x) = -2 N lim f'(x;6) =0 .
X 40 X-»00

Similarly lim 1I(8;x) = 0. Thus, there exists a design level x such that 1(8;x)

X >0

is maximized. Now differentiating logI(8;x) and equating to zero we get

26 (x,0) _ F(x;0) , _£(x;0) _
f(x;0) F(x;8) 1 - F(x;6) )
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1f x = 6, then £'(x;8) = 0 and F(x3;8) = 1 - F(x;8). Therefore 3% log 1(6;x) %<6
=01i.e., x = 6 is a point of extremum of I(8;x).

By twice differentiating the log 1(8;x) we get

2 Wy, y . 2
3*5 log 1(83;x) = 2 £(x;6)f (Xie)— (f'(x;6))
3x £°(x;0)

, U=FOG0)) ' (x;0) + £2(x;0)  F(x;0)E'(x;0) + £2(x;0)
(1 - F(x;))° (F(x;6))2

Now,
£'(6;0) = 0 , 1 - F(6,0) = F(836) = 1/2

we gel

5=
—= log I(8;x) - £"(6,6) 2 .
3x2 =6 2 ?ngss-+ 4 £°(0,8) < 0 by (i1) ,

1.e., I1(8;x) attains a local maximum value at x = 6.

Now by (iii), we get

X
F(x;0) (1 - F(x:8)) = (4 - (] £(t;8)d0)%)
0

2
> 1,‘ iz_(.’il_q)_ Vx>89
£°(6,8)
therefore, 2
p) R f (X;el
4 £7(8,86) F(x,6)(1 - F(x;8)) vx>®
Jr,

1(e,0} > 1(B,x) V x > 6.

Since fz(x,e) is symmectric about x = 6 one can imply that 1(8,x) is also
symmetric about x = 8. Hence,

1(8,8) > 1(8,x) V x ¥ 8 .

Therefore 1(®,x) attains its maximum at x = 6.

(Q.E.D.)

. é\~.a- - . e
. e e -_— . —- . e . _\.45-/{ N . -
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Corollary.

X
If F(x,0) = L f exp{- (t—e)z}dt . Then 1(0;x) is maximized at x = 0.
21 —-w

To see that the normal distribution satisfies the conditiovns of the above
theorem, we see that,

(i) is trivial.

(ii) f£"(e8,0) = L and f(3)(e,e) = 13/2
V2n (2m)
£7¢0,0) +2¢3(0,8) = —2 L o1 d_ o

an3? T

(iii) It is well known that (see, for example, D'Ortenzio (1965) or, Johnson

and Kotz (1970) Chapter 13).

[ 2
o(x) < [+ ¥1-e% ]

Therefore .
F(x,8) = ¢(x-8) < %ll +\/1 -(x—O) }
I' —_— e -
= %Ll +V1 - (%%%4%%)
Hence,

* 1/2
] f(t,e)de < ;[1 - (£(x,8)/£(8,8))%] V x> 8.
0

Hence, by the above theorem, the corollary is proved.
In order to construct first stage Bayes optimal interinspection design
lTevel, we first consider the simplest case when the prior distribution of 6 is

rectangular (a,b). 1In this case,

N fz(x—e)
F(x-0)[1 - F(x-0)]

b
f (x 8
! Fx-®) (- Fe ) dé

i
™

E/1(8,x)} =

X-a

£ )
F(y)[1 - F(y)]

£2(y)

F(y)[1 - F(y)]d




i o, x =atb
fe. x =--5 .

Hence the first stage optimal Bayes design level is the median of the
uniform distribution., We can generalize the above result to any symmetric
prior distribution as follows.

In general let g(t) be a symmetric bell shaped density symmetric about 6.
Then for the prior distribution of 6 having density g(6-A) defined over the

real line, the expected Fisher information function of 6 is

£2 (x-6)
~0)(1 - F(x-0)) 8

E{1(6,x)} = N [ x (8-1) de

N ? £2(y) (x-y=1) d
L FMO - Fyy B v

i [ 1(y) g(x-y-1) dy

-0

£2 () IF(){L - F())

where I(y)

For the sake of maximization of E{I(8,x)} we see that without loss of generality
we can assume that A = 8. For the following theorem we assume that F(x,6) =

X
f f(t-9) dt when { satisfies the conditions of the previcus thecrem such that

-

I1(A,x) is also bell shaped.

Theorem 2.5.
Lt 1(6,x) he the Fishor information function of 8. Suppose that 8 has
a prior digtribution G(8-1) defined on R, such that its p.d.f. g is symmetric

*
about the median x. Then x = X ig the point of maxima of E{1(8,x)} provided

[ &) d6 <0 . (2.19)

-
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Proof. Assume that X = 0. Then

E{(1(8;5x)} = [ I(y) a(x-y) dy .

-0

5% E{I(8;x) [ L) g x-y) ay

=0 if x=0=).

This follows by considering the fact that g'(+) is an odd function and 1(¥v)
is symmetric about y = 0. Hence, x = A = 0 is an extremal point of the expected

sisine 5 satotwanion fuaction.  Furtliermore,

2 o0
—?7 E{I(6;x)} = [ I(y) g"(x-y) dy .
3K e 1

TLe. +K denote the inflexion points of the density gf+). Hence,

2
'—d—}‘ E{I{9,x)!} :
“.\y_ x;:n

I(y) g"(-y) dy

]
taes 3

= f I(v) g"(y) dy because g" is an even function.

0

-K K w
= +[ + 716 g"(v) @y
“e KK
-K K
=2 [ 1(y) g"(y) dy + [ T(y) g"(y) dy
-—0 "K
-K K
<2 IR [ gy dy + T(R) [ g"(y) dy .
00 —¥:

This result follows by noting that

<0V D (-K,K)
gll(e)

>0V e ¢ (-K,K)
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2 w

Hence, E—E E{I(6,x)} | < I(K) f g'(y) dy ~ 0 = x* = X is the point of maxima ct
X x=0 —0
the expected Fisher information function.

(Q.E.D.)

Example

If 8 ~ N(O,oz), then

[ g"(y) dy

-

E(62 /6" - 15 )
g

=0

Therefore the normal density satisfies the condition of the above thoouroi..

3. Optimal Design of Twc Consecutjve Design Levels

W zh:1l on dicer the evonrentis? a0 b
section. Therefore the results obtained are applicable under both pelicices
(A7 a1 (3).
* I : . . *
if Jl(xl)’ Jz(xq) dencte the number cf components failing duriug \U,X!) Al
r4 3
k% )
(xl,x2 + xz) respectively, -hen

*
3y () 13 (%)) %, ~ BON,F(x,y,8))

*
and the conditional Fisher information of 6 given Jl(xl) and X, is

N xé
TOx) = =7 -
g (e " ~1)
THus, if 9 has an inverted gamma (A,m) priocr distribution, then the
*
posterior distribution of 6 given Jl(xl) = i is
R . o K 1 -x/e
£013) = COx, DIb,N,F(x,0)) 57 ¢ . 0<®8

¥
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It follows that

* *
- =% [0 ] :f.l(N—-j)H\-hcz)
. * * - %D (= e £
ECL(O3x) |0 () = §uxat = o' (xu e [ o (7@ ) exp( 0 )
A I 2 1% L s — — e e 0
00 —x2/6
(r -« )
9 » ] H [ (} l)
- GLe t o (e e
k=1 2=0 O+ X, (N=j+2) + kx,)
In the special case of j = 0, the optimal second stage interinspection time,
%
say, X2,0 is the point Xy at which
x‘f
noo- *2 v} is maximized
k=1 (% + Nx_ + x k)
1 2
Applying Lemma 2.1 we obtain,
A+ *
K* = E_~__§_fl?ﬁ9 (3.2)
2.0 m+ 2 :

where @ is given in Table 2.1 and a » 1.5936 as m =+ 4,
m

*
Let Xy j denote the second stage optimal interinspection time given that
s

*
j number of components failed during (0,x ). We shall call an inspection

"redundant" if the number of components failed is zero.
Intuitively X, X

*
This is because no component failed during (0,xl). So we would give the system
%
more than X, units of time so that some of the components may fail and avoid
any redundant it poection.
~ * »
Also if j(>0) number of components failed during (O,x]), then the inspection

*
was not redundant. So the next interinspection time x should not be as large

2,1
as had the first inspection produced a redundant inspection i.c.,
. 0,1,2
X < X A = 1 veesN
2 i 2 . 0 ] ’ L} 1)
' ‘f(&a\\‘* ™, - .
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On the other hand, if j = N, i.e., if all the components had failed at

the time of inspection, we let the system run too long without any inspection. i

Therefore,
*

NI

1

*
And if j(<N) number of components failed during (0,x]), then the 2nd stage

* *
interinspection time x, , should not be as small as Xy N i.e.,
’

2,3
. * % . 0 )
‘ X2,N<i x2,j v j=0,1,2,...,N.

We can combine the above intuitive results as

% * % * &
<X, . <X
2

*
N ZFo N1 L or 2 S SRS S R e

where jO is some integer belonging to the set {1,2,...,N-1}. Again, intuitively,

we teel that jo = .80(N), because the maximal Fisher information of 8 is obtained

at the 80th percentile of the exponential distribution.

The following lemma verifies the above intuitive results.

: Lemma 3.1.

' *

- E{1(8,x,|F,)} is maximized at x. ., where

: 21 2,j

) o a /A

D * ~ m . * X 2 m _

. X5 % w2 (> + (N—J)xl - Jxl/(e 1)} (3.4)
‘5 and a_ > 1.5936 as m~ 4. (am are given in Table 2.1).

[

: Proof.

x 2 3 2
E(I(05%,)|F D) = Dy 2 2 (DDt ———F——
k=1 2=0 (A+xl(N—j+2)+kx2)

!

»

i

§
.

i

¢

$

a
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2 2 2 1 *
Let f(x) = x~ I I ()1 , where a = A+ x (N-3j+2).
[’} m+h %,m 1
k=1 =0 (ag o + xk)
* .
Notice that X, may depend on m. Approximate the function f(x) by using integrals
(<]
, instead of the summation I .
i k=1
: Note that there exists a constant <n 3,2 such that
x 1 g dk
£(x) = x (PG —;
=0 c . (a + xk)
m,j,2 g,m
Furthermore,
A
2 2 dk
£(x) ® x" L (DD [ —7
2=0 c (a + xk)
m £,m
where ¢ € [0,1). (We are approximating f(x) by choosing c independent of %
and j.) Now,
}’ dk _ 1
m+ m+3
+ +
n (aQ,m xk ) x(m+3)(aQ’m cmx)
Therefore,
i .
'3
fx) = T (DD * —5
= +
2=0 (m+3)(al’m X 3
Moreover, %; f(x) = 0 implies the equation
h a + ¢ x - ¢ x(m+3)
I ey AR =0
2=0 (ak,m + cmx)
Let Yo = cmx(m+2). Therefore,
J EIVEN o,m ~ Im -0
L a_(N-j+2) y mt4 ’
2=0 ()\ + __m___._ + ._m_)
m+2 m+2
and for large m,
b ()t e -0,
=0 % am(N—J)/k am'llk ym/k
e e e
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or
' ¥ Yo la e/
J X y X a
2
: et +-toepn -2 e S
L A A A
2=0
From this equation we obtain
* *
X Yo —am/A j X —am/k —am/k j-1
QA+ O3 -—U-e ) -5 e (1-e ) =0,
from which
) N /A
y X X o
m L) - s m_ .
L= L+ (-9) - (e D1 s
or
* * “m/x
= A+ Xl(N—J) - % j/ (e - 1) ,
/X
- 1 * N * _ %nm
*n,y T o qmy X (83 - xg Jl(e D]
Now we note that if j = 0, then cn = %— . Therefore,
m
* ~ Ct.m % . * O‘m/)‘
x, oy Dok x (3) - % /" - D)
for large values of m.
(Q.E.D.)

The following table shows that the approximation is close even for small

values of m.

Incidently, it is readily seen that the optimal Bayes interinspection time

E3
xg’j = E(elj, xl) is

i -
I (i)(—l)g [+ (N-j+9,)x?] whl

S = — . (3.5)

2,5 T 2 *

@D T HEdt Do+ e
2=0

. D S VPR
© e e — ot e o s -  — g v PRSI 4 C -
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Table 3.1

A=1,N=1, j=0

m 1 2 3 4 5

, * 79 54 3 27
XZ,O . . 41 .3 .

‘ %0 .79 .54 41 .33 .27
t
! *
! X, .516 .389 .312 .261 .224
y
i

* *
Note that x is always greater than x, as expected.

2,0 1
. A=1,N=5
' il oo 1 2 3 4 5 a
m
*
X, 1.88 1.31  0.95 0.70  0.51  0.36
f =1 .5 1.549
i .4 1.88  1.53  1.10  0.84  0.49  0.48
*
! X, 0.48  0.39 0.33  0.27 0.22  0.18
=5 >3 1.567
‘ ) s 0.48  0.41  0.35 0.28 0.22  0.16
i 51
[ *
N X, 0.25 0.22 0.19 0.16 0.14  0.12
= m=9 ) 1.574
b % 0.25 0.22 0.19  0.17  0.14  0.12
L] 2
B %
. ; X, 0.10 0.09 0.08 0.08 0.07 0.07
4 | m=20 7 .583
N [ o 0.10 0.09 0,08 0.08 0.07 0.07

Q a

|
y __m L PERE - S |
‘ 2.1 T w2 1+ (N-3)x; = jx (e 1) 5
= 1,5936/(m+2)




T TR TR

30

4, Two Stage Optimal Designs.

By combining the results of Sections 2 and 3 we can construct two stage
optimal designs by using a procedure discussed by Zacks (1973) and (1977).
Now 1

1(0,x) = N{a—g F(x,O)}Z{F(x,G)(l-F(x,e)) -1

In order to construct two stage optimal Bayes design we select n components,
OiniN, }

and perform our experiment at the design level x, using only n components.
Then at the second stage the experiment is performed at the design level %, for
the remaining N-n components. The construction of the two stage design involves

finding the vector (no, xg, xg) such that
0 0
(N-n)E{I(S;xZ)IFl} + nE{I(8;x,)} < (N-n)E I{I(0:x,)|F} + noE{I(8:x )} (4.1)

for all n ¢ {0,1....,N}, x e X.

1°%2
That is the use of (no,xg,xg) gives global maximal Fisher information dur-

ing two stages.

We obtain (no,xg,xg) by the following steps:

(i) Find the optimal xg given Fl and n. Since xg is independent on n,

x, and J(xl), define

1
g(n,x)) = E[E(1(8;x0) [F,} (N-n) +n 1(83x)] .

(ii) Determine ngys xg such that g(n,xl) is maximized.

(1i1) Redefine xg by usingrno and xo and J(xg).

1

By the lemma (3.1)

0 -1 W
xz(n,xl,J(x])) = am(m+2) {(A + (n-J(xl))x1 - (e -1) le(xl)}.
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In order to determine Ny x?, one can use the computer for specified values of
N, A, m. If n =0 or N, the solution is simple to characterize.
Relative efficiency of the design is defined as follows:

For the first stage, the relative efficiency RE(8]X,m) is
b *
RE(O[X,m) = T(8;x)/T(03x )

where x? denotes the Bayes design level for the first stage, i.e.,

X, = 1.5936 A/m .

b
1
For the two stage design the relative efficiency function of 6 is defined in a

similar manner, by using xg, where xb is given by (3.5).

2
For numerical values of the relative efficiency function for different

values of m, see Zacks (1973).

5. Kth Stage Optimal Interinspection Times.

In the present section we consider the exponential failure distribution.

*
If jl’j2"°"jk denote the number of components failing during (O,xl),

* % * K-l K
(xl,x1 + xz),...,( z x| L xl), respectively then, we would like to find the
i=1 i=1 * * *
(K+1)st stage optimal interinspection time Xg+1 given jl’jZ"'°’JK’ KpseoerXye
* * *
Now JK+1(X)IO(JI(XI)""’JK(XK)’X%"'"xK% B(N,F(x; )) where JK+1(x) =
*
number of components failing during ( I g5 z Xy + x) and the conditional
i=1 i=1
Fisher information of 6 is
N x2 enx/e
1) = 7 7%
8 (1 -e

Now if 6 has inverted gamma (\,m) as the prior distribution, then the posterior

* * *
distribution of 8 given (J,s3,55ccesdpsr XysXgseeerX,) 18
1°Y2 K 1°72 K
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K * 1 /6
£(6]3j) = C I b(i,;N,F(x,;0)) —= e 3 0 < 6 <4
- . i i mtl
i=1 6
; where C is a constant. Therefore,
| /
‘ o K -x/6
i L3 -
, E(1(0,0[3) = C [ I b(j NFG;0)) —ar e MORE 2 qe
' ~ 0 i=1 8 6 (l-e )
E
K ® -x,/8 j, N 2 _(Mx)/e
=CN I (N Y[ I {l-e ') * exP(—(N-jl)Xi/e}] ;+5 > x/9) d
; i=1 Ji 0 i=1 | o™ (1-e
! *
; K © K -x,/6 3,
{ v Ny P (1‘el)lm+51-x/e
i i=1 -1 0 i=1 6 (l-e )
K *
exp{-1/6( L (N—j,)xi + A+ x)} de.
i=1 '
*/e s 3 .
-x j. i, i V. *
i Now (1 - e 1 yt= ot (Hen t exp{-x, v ,/6}.
- v, i i
! \)i—l i

Therefore,
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Therefore, §
. . . v

! 2 i, 3, 3 o

| B0 (5 = ¢« 1 o5 ... 2(hoHS) (nitt

; \)1 \)2 vK 1 2 K

! _ s

; . 1/6[Zlvi X, + ZI(N Ji)xi + 2+ x)

[ em+.‘3(1 _ —xle) de
0 € K

' , K Jiok e
o =C'x (T )HYCcm( NEL

l i=1 v, i=1"i

| i

{

i _ K * . +

x ? . 1/6[21 xilvi+N Ji] + A kx]
b de
k=1 0 g™t
, = 112 keowog Z?vi
‘ =Cc'x" & ¢ & ... A{m(CHIED
k=1 v_ v v, i=1 i

| 1 V2 K
]

. 1

' *

, (Z?xi(vi+N—ji) +o o+ k)™

Let i 3

9 _ A B KoK 3 0V 1
, a, = xi(v,+N—Jl) =C¢"x"r r ... (¢t (v Y(-1) ) A
. i 1 k=1 v v, i=1 ‘i (L. . a_  + X+ kx)

§ 1 K i=1 vy
|
]
‘3 Differentiating with respect to x, we get after equating to zero;
1

J b 2(2K a  +A)-x(m2)k
3 0 1 K K j. vi i=1 vi
5o BIG0|jh = 2 ¢ ..oz (vl)(—l) ) = —=1=0 -
~ k=1 v v 1 i (A + ¢ a +kx)
1 K i=1 vy
. Let xm j be the point for which the above equation is satisfied, define a j = '
s 9y ]

(xm’j)(m+2).
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Therefore, —Q-Efl(e;x)[j} = 0 implies

IX
] hj 2[A\+XK a ) -aun ek
o 1 K K j1 vy i=1 vy m,}
I .. [E o (DED ] K TS
k=1 v. =0 v,=0 i=1 7i [ (mt2) (Y, a +\) = ka ]
1 K i=1 Vi m, ]
- * + 1 3
a, = x (v +N-j)
, i
f If all j, = 0, i=1,2,...,K, then trivially,
‘ *
E{I(0;x)|i} is maximized at x .
m, i=0
where
(\ + N \_K b3
R S O e U
, ‘ m, i=0 m+ 2 )
We thus conjecture that if j # 0, then
t « /A
K K m
+ - - = > -
x* . am(k L (N Ji).X,,,,_w":71_-4‘_1"/4(:,,“,‘,4___1,)1
m,j " m+ 2

But this result needs to be varified.

Also, we note that if j = (0,0,0,...,0,11.0,0,....0) then

a a_/X
L m * * m
~ + (N-i - ) - |
xm,j ) {x (N Ji)xi I % (e 1)

as varified in Lemma 3.1.

. P At VI
-— e - ks e o — m—e gy . - . . . - -
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